Коэффициент теплопроводности – это важный показатель при выборе строительных материалов для теплоизоляции. В статье мы рассмотрим, что такое коэффициент теплопроводности, как его измеряют и какие значения являются оптимальными для различных условий эксплуатации.

Количество переносимого тепла Q называется тепловым потоком; эту величину обычно относят к единице времени — часу. Тепловой поток, отнесенный к единице поверхности, называется удельным тепловым потоком, плотностью теплового потока, или тепловой нагрузкой поверхности нагрева q.

 Величины Q, а также q являются вектором, за положительное направление которого принимают направление по нормали к изотермической поверхности в сторону уменьшения температуры, т. е. противоположно направлению вектора температурного градиента.

Связь между количеством тепла dQ, проходящим через элементарную площадку dF, лежащую на изотермической поверхности, в единицу времени, и температурным градиентом установил Фурье:

dQ (1)

Удельный тепловой поток определяется соотношением:

(2)

Знак минус в правой части уравнений (1) и (2) указывает на то, что тепловой поток и температурный градиент, как векторы, имеют противоположные направления. Множитель пропорциональности λ называется коэффициентом теплопроводности. Коэффициент λ является физическим параметром вещества и характеризует способность его проводить тепло.

 Из уравнения (2) следует, что коэффициент теплопроводности λ имеет размерность:

lamda (3)

Следовательно, величина коэффициента теплопроводности определяет собой количество тепла, которое проходит в единицу времени через единицу изотермической поверхности при температурном градиенте, равном единице.

В общем случае коэффициент теплопроводности имеет различные значения для различных веществ. Для данного вещества коэффициент теплопроводности зависит от его физических характеристик, температуры, давления, влажности и структуры. Для веществ, имеющих практическое применение, не удалось установить аналитическую зависимость коэффициента теплопроводности от физических характеристик вещества. При инженерных расчетах значения коэффициента теплопроводности выбираются из справочных таблиц, составленных по опытным данным. На рисунке показаны пределы изменения коэффициента теплопроводности различных веществ.

lamda_order

Порядок величин коэффициента теплопроводности для различных веществ

Опыт показывает, что для материала определенной структуры и влажности, находящегося при атмосферном давлении, коэффициент теплопроводности зависит от температуры. Для многих материалов с достаточной для практики точностью зависимость коэффициента теплопроводности от температуры можно принять линейной:

(4)

где λо – значение коэффициента теплопроводности при температуре  t0;

b — постоянная, определяемая опытным путем.

Значения коэффициента теплопроводности газов находятся в пределах от 0,004 до 0,4 Вт×м-1×K-1. С повышением температуры коэффициент теплопроводности идеальных газов увеличивается, а от изменения давления практически не зависит. Исключение составляют очень низкие (20 мм рт. ст.) и очень высокие (>2000 атм) давления. Наибольшие значения коэффициента теплопроводности у гелия и водорода (в 5 – 10 раз больше, чем у других газов). Это объясняется большой скоростью движения молекул гелия и водорода между очередными соударениями.

водяного пара и других реальных газов, существенно отличающихся от идеальных, заметно зависит от давления.

Для газовых смесей коэффициент теплопроводности необходимо определять опытным путем, так как закон аддитивности для коэффициента λ неприменим.

капельных жидкостей лежит примерно в пределах от 0,07 до 0,5 Вт×м-1×K-1. С повышением температуры для большинства жидкостей коэффициент λ убывает, исключение составляют вода и глицерин. При увеличении давления коэффициент теплопроводности жидкостей возрастает.

металлов лежит в пределах от 1,72 до 310 Вт×м-2. Наиболее теплопроводным металлом является серебро (λ = 310), затем красная медь (λ = 292), золото (λ = 224), алюминий (λ = 155) и т. д. При наличии примесей в металле коэффи-миенттеплопроводности уменьшается. Так, например, красная медь со следами мышьяка имеет λ = 105 Вт×м-1×K-1. Для железа с 0,1% углерода λ = 39 Вт×м-1×K-1, с 1,0% углерода λ = 29, с 1,5% углерода λ = 27 Вт×м-1×K-1. Для закаленной углеродистой стали коэффициент теплопроводности на 10 – 25% ниже, чем для незакаленной. При повышении температуры значения коэффициента теплопроводности чистых металлов уменьшаются. Это объясняется тем, что с повышением температуры появляются тепловые неоднородности в металле, вызывающие усиление рассеивания электронов. В отличие от чистых металлов коэффициент теплопроводности сплавов увеличивается с ростом температуры.

строительных и теплоизоляционных материалов лежит в пределах от 0,02 до 2,1 Вт×м-1×K-1, причем с повышением температуры он возрастает. Как правило, с увеличенном плотности материала коэффициент теплопроводности растет. Он зависит от структуры материала, его пористости и влажности. Наличие пор во многих строительных и теплоизоляционных материалах (кирпич, бетон, асбест, шлак и т. п.) не позволяет рассматривать их кик сплошную среду. Применение к таким телам закона Фурье является условным. порошкообразных и пористых тел в значительной степени зависит от плотности. Например, коэффициент теплопроводности асбеста при возрастании плотности от 400 до 800 кг/м3 увеличивается от 0,08 до 0,18 Вт×м-1×K-1. Такое положение объясняется тем, что с увеличением плотности материала уменьшается количество воздуха в порах, у которого коэффициент теплопроводности значительно меньше, чем у твердой части пористого тела. Для влажного материала коэффициент теплопроводности значительно больше, чем для сухого и для воды в отдельности. Это объясняется конвективным переносом тепла, возникающим вследствие капиллярного движения воды по пористому материалу, а также тем, что абсорбционно связанная влага имеет другие характеристики по сравнению со свободной водой. 

Как считать коэффициент теплопроводности?


Коэффициент теплопроводности (λ) — это величина, которая характеризует способность материала проводить тепло. Он измеряется в Вт/(м·К) и определяет количество тепла, которое проходит через единицу материала толщиной в 1 метр при разности температур 1 К между его поверхностями.

Для расчета коэффициента теплопроводности материала необходимо знать его плотность (ρ), теплоемкость (с) и теплопроводность (k). Обычно эту величину можно найти в технических характеристиках материала.

Формула для расчета коэффициента теплопроводности выглядит следующим образом:

λ = k / (ρ × c)

где:
λ – коэффициент теплопроводности
k – коэффициент теплопроводности материала
ρ – плотность материала
с – теплоемкость материала

Для расчета коэффициента теплопроводности материала необходимо подставить значения плотности (ρ) и теплоемкости (с), а также коэффициента теплопроводности (k), которые указаны в технических характеристиках материала, в формулу выше.

Важно учитывать, что коэффициент теплопроводности зависит от температуры, влажности и других факторов, поэтому его значение может варьироваться в разных условиях.